

IEEE TRANSACTIONS ON ELECTRON DEVICES

Controlling Threshold Voltage of CMOS SOI Nanowire FETs With Sub-1 nm Dipole Layers Formed by Atomic Layer Deposition

Dongqi Zheng, Wonil Chung, Zhizhong Chen[®], Mengwei Si[®], Calista Wilk, and Peide D. Ye[®], *Fellow, IEEE*

Abstract—In this article, bidirectional control of threshold voltage (V_T) is realized in both n- and p-siliconon-insulator (SOI) nanowire FETs (NWFETs) by using sub-1 nm atomic-layer-deposited (ALD) dipole layers (Y2O3 and Al_2O_3) for the first time. A 0.7 nm Y_2O_3 inserted between bottom native SiO_x (<1 nm) and top HfO₂ (3 nm) can shift the V_{TH} by -138 and -58 mV for n- and p-NWFÉT, respectively, while 0.7 nm Al_2O_3 can shift the V_T of n-NWFET by +219 mV and p-NWFET by +134 mV. The tunability of such a high-k superstructure for the flat band voltage (V_{FB}) shift of capacitors and V_{TH} shift of planar n-SOI FETs are also investigated. Furthermore, to concisely control the V_{TH} and V_{FB} as design, capacitors fabricated with quadralayer (SiO_x/HfO₂/Al₂O₃/Y₂O₃) high-k superstructure were fabricated and 3 mV V_{FB} shift is achieved by carefully adjusting the composition of intermixed-dipole layers. This work points out the route to concisely tune the threshold voltage of complementary metal-oxide-semiconductor (CMOS) FETs with the desired direction and strength.

Index Terms— Atomic layer deposition (ALD), dipole layers, high-*k*, nanowire FET (NWFET), threshold voltage engineering.

I. INTRODUCTION

H IGH-*k* dielectric metal-gate (HKMG) process was first introduced to semiconductor manufacturing in 2007 for high-performance and low-power consumption applications, by reducing the gate leakage current and eliminating polysilicon depletion [1]. However, such progress also brought some new challenges such as the requirement of dual band-edge (DBE) effective work function (EWF) gate metals [2], [3], Fermi-level pinning at the high-*k*/metal interface [4], and undesired threshold voltage shift in the practical applications [5].

Manuscript received October 1, 2021; revised November 26, 2021; accepted December 14, 2021. This work was supported by the Advanced Logic Laboratory at Austin of Samsung Semiconductor, Inc. The review of this article was arranged by Editor L. Ge. (*Corresponding author: Peide D. Ye.*)

The authors are with the Birck Nanotechnology Center and the Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail: yep@purdue.edu).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/TED.2021.3136493.

Digital Object Identifier 10.1109/TED.2021.3136493

Fig. 1. (a) Normalized oxygen areal density (σ) in different oxides. Schematic of high-*k* dipole formation mechanism between different (b) high-*k* layers, high-*k*/SiO₂ layers with (c) larger and (d) smaller oxygen areal density (σ) compared to SiO₂.

As a result, adjusting the flat-band voltage (V_{FB}) and threshold voltage (V_{TH}) remains a serious challenge that needs to be solved to achieve high-performance high-*k* complementary metal-oxide-semiconductor (CMOS) technologies.

Interface dipole engineering (IDE) is regarded as an effective method to tackle the bottlenecks mentioned above, which is to alter the band alignment by dipole moment formed at the interface of different dielectrics within the MOS stack. Previous work provides both theoretical [6], [7] and experimental evidence [8]-[12] of flat-band voltage shift of high-k MOS devices due to the dipole formation at the high- k/SiO_2 interface. Among them, the oxygen areal density model proposed by Kita and Toriumi [10] provides a comprehensive explanation for dipole formation mechanisms as well as the V_{FB} shift's dependence on the high-k dipole layers. In this model, oxygen ion migration is driven by the diffusion force induced by the difference in the oxygen areal density (σ) between the two oxides. Normalization of different high-k oxygen areal densities compared to SiO_2 is concluded in Fig. 1(a), with the order of $Al_2O_3 > HfO_2 > SiO_2 > Y_2O_3$ [10]. Fig. 1(b)-(d) illustrates that, at the interface, oxygen ions move from a higher- σ layer to a lower- σ layer, leaving vacancies on the

0018-9383 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. layer side, and an oxygen ion (with a negative charge) and a vacancy (with a positive charge) is paired to form dipoles. However, at the interface between two high-k dielectrics, the movement of both oxygen and metal ions neutralize each other; as a result, no dipoles are formed, which is referred to as the mirror-plane effect. Meanwhile, Fang et al. [13] investigate the surface energy-dependent formation of dipole layer at the nonplanar dielectric interface on Si nanowire (NW) by molecular dynamics simulations. The result also shows that built-in potential induced by the surface energy difference on the surface curvature of the dielectric heterointerface plays an important role in the threshold voltage of Si nanowire FETs (NWFETs) or gate-all-around FETs (GAAFETs) [13]. Until now, most of the relevant works in the experiment only focused on the high-k dipole layer's tunability of $V_{\rm FB}$ on MOS capacitors and planar transistors. IDE studies on advanced 3-D CMOS structures (fins or NWs) for both n- and p-MOSFET were rarely reported.

In this work, the dipole effects of atomic layer deposition (ALD)-grown Al₂O₃ and Y₂O₃ on HfO₂ are investigated first through high-*k* MOS capacitors and planar MOSFETs. The same gate stacks are successfully integrated into n- and p-type 3-D advanced silicon-on-insulator (SOI) NWFETs and IDE realizes controllable V_{TH} shifts for the first time. Finally, a special design of quadra-layer SiO_x/HfO₂/Al₂O₃/Y₂O₃ high-*k* super-structure with compensated dipole effects is proposed and experimentally demonstrated to achieve as small as 3 mV V_{FB} shift in MOS capacitors.

II. EXPERIMENTS

The fabrication process flow of NW and planar SOI (Si thickness \sim 70 nm) FETs is shown in Fig. 2(a). Activation of ion-implanted wafers was done in rapid thermal annealing (RTA) chamber at 1000 °C for 60 s. E-beam lithography was used throughout the NWFET process. Buried oxide (BOX) under the defined fins was partially selectively etched with HF solution to release the NWs. Dipole layers (Al₂O₃ or Y₂O₃) and the main HfO₂ dielectric (3 nm) were then deposited in situ using the same ALD. Trimethylaluminum (TMA), Tris (methylcyclopentadienyl) yttrium, and Tetrakis (dimethyl-amino) hafnium (TDMAH) were used as precursors for the growth of Al₂O₃, Y₂O₃, and HfO₂, respectively, at 250 °C. H₂O was used as an oxidant. Capacitors studied in this work are fabricated on low-doped silicon bulk wafers using the same process as FETs except for channel definition and S/D-related processes. Native SiO_x (<1 nm) was used as an interfacial layer between the high-k dielectrics and Si. The gate metal used in this work is fixed as Al. The schematic of the Si NW structure is presented in Fig. 2(b). Fig. 2(c) shows the false-colored SEM images of the side-view (left) and top-view (right) fabricated NW structures immediately after the step of NW release. Multiple parallel ultrathin NWs can be seen as six and ten for the n- and p-NWFET, respectively. An optical image of the planar MOSFET is shown in Fig. 2(d), with the inset image of the gate-stack. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of the gate-stack is further shown in Fig. 2(e), where the sub-1 nm ALD dipole layer can be

Fig. 2. (a) Process flow of the fabrication of 3-D NWFET (planar devices follow the same process except for steps 3, 5, and 6). (b) Schematic of the NW structure on SOI wafer. (c) SEM image of the 3-D NW SOI structure from side view (left) and top view (right). (d) Optical image of planar FET on SOI with a schematic of high-*k* gate-stack. (e) HAADF-STEM and the corresponding EDS images of the sub-1 nm ALD dipole layer of (f) Al₂O₃ and (g) Y₂O₃ inserted between HfO₂and SiO₂, scale bar: 3 nm.

Fig. 3. C-V curve of different (a) Al₂O₃ and (b) Y₂O₃ thickness (0–1.2 nm) on top of 3 nm HfO₂ without relative V_{TH} shift observed due to mirror plane formation, with the schematic of dipole layer gate-stack as inset.

observed between HfO₂ and native SiO_x. The dipole layer in this work is referred to as the ultrathin high-*k* layer (Al₂O₃ and Y₂O₃) deposited by ALD to tune the interface dipole properties. Meanwhile, the corresponding EDS images of the sub-1 nm ALD dipole layer of (f) Al₂O₃ and (g) Y₂O₃ inserted between HfO₂ and SiO_x are presented with the scale bar of 3 nm.

III. RESULTS AND DISCUSSION

A. Mirror-Plane Effect on Different High-k Interfaces

Mirror-plane phenomena at the interface of Al_2O_3/HfO_2 and Y_2O_3/HfO_2 are first investigated as a reference for the following experiments. C-V characteristics are presented in Fig. 3(a) and (b). Different thicknesses ALD dipole layers of

Fig. 4. (a) Schematic of high-*k* dipole layer stack and *C*–*V* curve of different ALD Al₂O₃ thicknesses (0–1.2 nm) under 3 nm HfO₂. (b) Extraction of ΔV_{FB} with Al₂O₃ under or above HfO₂. (c) Statistical transfer curves of n-MOSFET (planar) with 0.56 nm Al₂O₃/3 nm HfO₂ (red) or only 3 nm HfO₂ (black) as the gate-stack, where the channel length is 40 μ m and width is 95 μ m. (d) Distribution of extracted V_{TH} in two cases with drain current at 0.01 μ A/ μ m and drain voltage at 0.05 V. (e) and (f) Distribution of the ON-current and mobility of the MOSFET with or without Al₂O₃ dipole layer.

Al₂O₃ and Y₂O₃ (from 0 to 1.2 nm) are inserted on top of 3 nm HfO₂. It is noticeable that no V_{TH} shifts are observed in the MOS capacitors as expected, which indicates the movement of oxygen and metal (Hf, Al, Y) ions neutralize each other, therefore, no dipoles are induced.

B. ALD Al₂O₃ Dipole Effect on Capacitors/n-SOI Planar FET

MOS capacitors were first fabricated to preliminarily test the effect of ALD Al₂O₃ dipole layer insertion on V_{FB} (extracted using C-V simulator [14]), Al₂O₃ dipole layers were inserted between SiO_x and HfO₂. The results of the C-V measurement are shown in Fig. 4 in detail. Capacitance is observed to decrease with the increase of equivalent oxide thickness (EOT) and the positive V_{FB} shift is observed when the dipole layer is inserted in direct contact with SiO_x [Fig. 4(a)]. The positive shift is caused by the difference in normalized oxygen areal density of Al₂O₃/SiO_x (+0.37) and HfO₂/SiO_x (+0.2) in the model mentioned above. Such trend can be more clearly observed in Fig. 4(b) where extracted V_{FB} shifted more than

+250 mV with Al₂O₃ > 0.6 nm. The ΔV_{FB} gradually saturates when Al₂O₃ thickness (0-1.2 nm) reaches beyond 1 nm, consistent with previous reports [2]. However, as shown in Section III-A, V_{FB} was unaffected when the Al₂O₃ layer was placed on top of 3 nm HfO_2 away from SiO_x , indicating that the dominant interface that shifts $V_{\rm FB}$ is the SiO_x/high-k interface. Planar SOI n-FETs were further fabricated using the same dipole layers to validate the $V_{\rm TH}$ shift trends. Fig. 4(c) shows the transfer curves of all the n-MOSFET devices fabricated with 0.56 nm Al₂O₃/3 nm HfO₂ (red) and only 3 nm HfO₂ (black) as the gate-stack. The subthreshold swings are calculated to be 76.1 and 77.9 mV/dec separately at room temperature, indicating a high-quality interface formed between the channel and oxide stack. Threshold voltages were further extracted in two different gate stacks with drain current fixed at 0.01 μ A/ μ m and drain voltage at 0.05 V. Fig. 4(d) illustrates the distribution of threshold voltages of n-MOSFET with or without Al_2O_3 as the insertion layer, which is -0.321 and -0.439 V, respectively. A positive shift of +118 mV was achieved by employing 0.56 nm ALD Al₂O₃, since the thickness of the Al₂O₃ dipole layer is already ultrathin, the influence of the increase of gate-stack thickness can be neglected in the threshold voltage calculation. Fig. 4(e) and (f) describe the statistical result of the ON-current and mobility of the MOSFETs as fabricated with or without the dipole layer insertion. Mobility is decreased from 143 to 105 cm²/V·s due to the remote Coulomb scattering (RCS) effect induced by the dipole moments [15]. Meanwhile, ON-current extracted at the gate voltage of V_{TH} + 1 V also drops by around 25% because of the lower mobility and positive threshold voltage shift.

C. ALD Y_2O_3 Dipole Effect on Capacitors and n-SOI Planar FET

A similar process was also carried out to investigate the ALD Y₂O₃ dipole properties. Capacitances of MOS capacitors were first measured in the same way. The Y_2O_3 dipole layers were deposited between SiO_x/HfO_2 and as seen in Fig. 5(a). Like the Al₂O₃case, capacitance is observed to decrease with the thickness increasing, while $V_{\rm FB}$ shifted to the negative direction when the dipole layer inserted in direct contact with SiO_x [Fig. 5(a)]. A larger shift approaching -600 mVcan be more clearly observed in Fig. 5(b) with $Y_2O_3 >$ 1.2 nm, with no $\Delta V_{\rm FB}$ saturation trend shown. The negative shift can be explained by the difference in normalized oxygen areal density of Y_2O_3/SiO_x (-0.09) and HfO_2/SiO_x (+0.2) in the model mentioned above. Planar SOI n-FETs were further fabricated using the same dipole layers to monitor the threshold voltage shift. The transfer curves of all the n-MOSFET devices fabricated with 0.7 nm Y₂O₃/3 nm HfO₂ (blue) or only 3 nm HfO₂ (black) as the gate-stack are illustrated in Fig. 5(c). The subthreshold swings are measured to be 80.8 and 84.5 mV/dec. Threshold voltages were further extracted, and a shift of -224 mV [Fig. 5(d)] is determined with drain current at 0.01 μ A/ μ m and drain voltage at 0.05 V. Fig. 5(e) and (f) shows the distribution of ON-current and mobility after Y₂O₃ dipole layer insertion, which is rarely investigated in the previous research. As is shown in Fig. 1(a),

Fig. 5. (a) Schematic of high-*k* dipole layer stack and *C*–*V* curve of different ALD Y₂O₃ thicknesses (0–1.2 nm) under 3 nm HfO₂. (b) Extraction of ΔV_{FB} with Y₂O₃ under or above HfO₂. (c) Statistical transfer curves of n-MOSFET (planar) with 0.7 nm Y₂O₃/3 nm HfO₂ (red) or only 3 nm HfO₂ (black) as the gate-stack, where the channel length is 40 μ m and width is 20 μ m. (d) Distribution of extracted V_{TH} in two cases with drain current at 0.01 μ A/ μ m and drain voltage at 0.05 V. (e) and (f) Distribution of the ON-current and mobility of the MOSFET with or without Y₂O₃ dipole layer.

the dipole moment formed at the interface of Y_2O_3/SiO_x has an opposite polarity and a weaker strength compared to the reference sample (HfO₂/SiO_x). Under this circumstance, the side effect of RCS induced by the dipole between HfO₂ and SiO_x is eased, thus an increase of mobility can be observed, as well as ON-current due to the higher mobility and negative shift of threshold voltage.

D. ALD Al₂O₃/Y₂O₃ Dipole Effect on 3-D NWFET

Many advanced structures such as FinFET [16], [17], NWFET [18], [19], and GAAFET [20] were proposed to further scale the process node with Moore's law approaching the limit. Among them, the 3-D NW channel is regarded as a promising solution to minimize the short channel effects (SCEs) and improve the device performance at the same time [21]. To address the V_T engineering problem for the state-of-the-art 3-D transistors, sub-1 nm ALD dipole layers were integrated into CMOS NW structures. To place V_T values near 0 V symmetrically for both n- and p-NWFETs, it is critical to be able to shift V_T in both positive and negative

Fig. 6. (a) Overlapped transfer curves of SOI n-NWFETs (L'W'H = 514 nm/26 nm/13 nm) with 0.7 nm of dipole layers (Al₂O₃ or Y₂O₃) under 3 nm HfO₂. (b) Overlapped transfer curves of SOI p-NWFETs (L'W'H = 401 nm/52 nm/13 nm) with 0.7 nm of dipole layers (Al₂O₃ or Y₂O₃) under 3 nm HfO₂. (c) Extracted V_T from (**top**) n-NWFET and (**bottom**) p-NWFET. 0.7 nm of Al₂O₃ and Y₂O₃ dipole layers shift the V_T in positive and negative directions, respectively, for both n- and p-NWFETs. (d) *C*-*V* hysteresis of MOS capacitors fabricated along with SOI n-NWFETs, hysteretic shifts in V_{FB} due to oxide fixed charges are negligible after insertion of dipole layers even with 2.5 V sweep range.

directions with desired strengths. Fig. 6(a) and (b) overlap the transfer curves acquired from multiple SOI n-NWFETs and p-NWFETs with either 0.7 nm of Al₂O₃ (blue circle) or Y_2O_3 (red triangle) grown by ALD method under 3 nm HfO₂. It can be seen from Fig. 6(c) that Y_2O_3 shifted the V_T of both n-NWFETs by -139 mV and p-NWFETs by -58 mV while Al_2O_3 shifted the V_{TH} of n-NWFET by +219 mV and p-NWFET by +134 mV. Shifts in V_{TH} could also be caused by various oxide interface-related trap charges which are usually visible in the form of voltage hysteresis. To evaluate the effect of these charges on $V_{\rm TH}$ shifts, C-V hysteresis measurements on MOS capacitors fabricated simultaneously with NWFETs were acquired under the sweep voltage larger than 2.5 V, shown in Fig. 6(d). As seen in three C-V curves, voltage hysteresis caused by interface trap charges are observed to be negligible.

E. Intermixed ALD Al₂O₃/Y₂O₃ Dipole Effect

To further improve the tunability of dipole layers on threshold voltage shift, we introduce the intermixed-dipole engineering, by integrating Al_2O_3 and Y_2O_3 into Hf-based high-*k* MOS structure with different compositional ratios. The process flow is shown in Fig. 7(a). Fig. 7(b) illustrates the shift of C-V curves with Y_2O_3 ALD growth cycles varying from 0 to 2 (0.1 nm/cycle) while Al_2O_3 is fixed at one cycle (0.0875 nm/cycle). Negative V_{FB} shifts of 134 mV (green line, one cycle) and 151 mV (red line, two cycles) are observed

Fig. 7. (a) Fabrication intermixed dipole MOS capacitors. (b) V_{FB} shifts with Y_2O_3 varying from 1 to 3 cycles and Al_2O_3 fixed as one cycle (0.0875 nm/cycle). (c) V_{FB} shifts with Al_2O_3 increasing from 0 to 6 cycles and Y_2O_3 fixed as one cycle (0.1 nm/cycle). (d) V_{FB} shifts with Al_2O_3 increasing from 0 to 6 cycles and Y_2O_3 from 0 to 6 cycles and Y_2O_3 from 0 to 3 cycles.

compared to the reference sample (without Y₂O₃). Meanwhile, C-V curves of capacitors with Y₂O₃ fixed as one cycle while Al_2O_3 varied from 0 to 2 cycles are described in Fig. 7(c), where V_{FB} is positively shifted by 34 and 10 mV, respectively. The $V_{\rm FB}$ shift due to a single Al₂O₃ cycle is relatively weaker than Y₂O₃ in the intermixed dipole system, consistent with the result in the previous section. Furthermore, MOS capacitors with 0-6 cycles Al₂O₃ and 0-3 cycles Y₂O₃ as intermixed dipole layers are fabricated to investigate the turnability of different cases. Fig. 7(d) shows the increasing cycle number of Al_2O_3 and Y_2O_3 can shift the V_{FB} bidirectionally as expected. It is also noticeable that a single Y_2O_3 cycle (without Al_2O_3) can shift $V_{\rm FB}$ as large as -142 mV, compared with the reference sample (without both Y₂O₃ and Al₂O₃). In addition, a group of six cycles Al₂O₃ and with two cycles Y₂O₃ can neutralize the $V_{\rm FB}$ shift to as small as +3 mV, which means dipole moments formed at the intermixed high-k dielectric interfaces can neutralize each other to weaken dipole strengths in the wholescale. This phenomenon can be explained by the amorphous properties of the ALD-growth material [22]. Due to the intermixed growth, $Al_x Y_{2-x} O_3$ is most likely formed at the interface between HfO_2 and SiO_x , which is inferred to have a medium oxygen areal density compared to Al₂O₃ and Y_2O_3 based on the experimental observations. As a result, it is possible to find an appropriate combination of dipole layers for specifically desired shifts within the range of millivolt.

Moreover, concise control of threshold voltage is of critical importance to modern very large scale integration (VLSI) design of specific ultralow-V threshold (ULVT), low-V threshold (LVT), standard V threshold (SVT), and high-V threshold (HVT) cells to meet the requirement of both operation speed and power consumption. Si NWFET optimized by IDE

can avoid high subthreshold leakage current by enhancing the gate control and maintaining a faster speed at the same time. Large threshold voltage tune can be achieved by either using higher/lower oxygen areal density dielectrics such as SrO or La₂O₃ [10] or increasing the repetition number of the asdesign superstructure stack (Y₂O₃/SiO₂ or Al₂O₃/SiO₂) in the gate-stack since the dipole moments can remain within the superstructure [9]. However, the tradeoff between EOT and V_{TH} shift should be carefully taken into consideration in this case.

IV. CONCLUSION

In summary, the dipole effect of sub-1 nm ALD Al₂O₃ and Y_2O_3 is investigated on V_{FB} of MOS capacitors and V_{TH} shifts in n- and p-SOI planar/NWFETs. The results indicate a bidirectional V_{TH} shift can be realized by inserting dipole layers between the SiO_x and HfO₂. More importantly, such shifts were only observed when the dipole layers were deposited in direct contact with SiO_x indicating that the dipole formed at SiO_x/high-*k* interface is responsible for the phenomenon. Furthermore, intermixed multiple dipole layers in different compositions are also systematically studied here by high-*k* stacks of HfO₂ and Al₂O₃ and Y₂O₃, to control the V_T shift strengths and directions in a more tailored way. This work deepens the understanding of IDE and provides a feasible design to concisely tune the threshold voltage of MOSFET in a 3-D advanced structure.

ACKNOWLEDGMENT

The authors would like to thank the technical support and guidance of Wei-E. Wang and Mark Rodder from the Advanced Logic Laboratory at Austin of Samsung Semiconductor, Inc.

REFERENCES

- K. Mistry *et al.*, "A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging," in *IEDM Tech. Dig.*, Dec. 2007, pp. 247–250.
- [2] Q. Xu *et al.*, "Attainment of dual-band edge work function by using a single metal gate and single high-k dielectric via ion implantation for HP CMOS device," *Solid-State Electron.*, vol. 115, pp. 26–32, Jan. 2016, doi: 10.1016/j.sse.2015.09.019.
- [3] Y. W. Chen *et al.*, "Effective work function modulation by aluminum ion implantation on Hf-based high-k/metal gate pMOSFET," *IEEE Electron Device Lett.*, vol. 31, no. 11, pp. 1290–1292, Nov. 2010, doi: 10.1109/LED.2010.2066952.
- [4] L. Kornblum, J. A. Rothschild, Y. Kauffmann, R. Brener, and M. Eizenberg, "Band offsets and Fermi level pinning at metal-Al₂O₃ interfaces," *Phys. Rev. B, Condens. Matter*, vol. 84, no. 15, pp. 23–26, Oct. 2011, doi: 10.1103/PhysRevB.84.155317.
- [5] J. S. Lim, S. E. Thompson, and J. G. Fossum, "Comparison of thresholdvoltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs," *IEEE Electron Device Lett.*, vol. 25, no. 11, pp. 731–733, Nov. 2004, doi: 10.1109/LED.2004.837581.
- [6] P. D. Kirsch *et al.*, "Dipole model explaining high-k/metal gate field effect transistor threshold voltage tuning," *Appl. Phys. Lett.*, vol. 92, no. 9, pp. 1–3, 2008, doi: 10.1063/1.2890056.
- [7] L. Lin and J. Robertson, "Atomic mechanism of electric dipole formed at high-K: SiO₂ interface," J. Appl. Phys., vol. 109, no. 9, pp. 1–9, 2011, doi: 10.1063/1.3583655.
- [8] S. Guha et al., "Examination of flatband and threshold voltage tuning of HfO₂/TiN field effect transistors by dielectric cap layers," *Appl. Phys. Lett.*, vol. 90, no. 9, pp. 9–11, 2007, doi: 10.1063/1.2709642.

- [9] Y. Hotta *et al.*, "Control of dipole properties in high-k and SiO₂ stacks on Si substrates with tricolor superstructure," *Appl. Phys. Lett.*, vol. 113, no. 1, pp. 1–5, 2018, doi: 10.1063/1.5034494.
- [10] K. Kita and A. Toriumi, "Origin of electric dipoles formed at high-k/SiO₂ interface," *Appl. Phys. Lett.*, vol. 94, no. 13, pp. 2–4, 2009, doi: 10.1063/1.3110968.
- [11] L. Q. Zhu, K. Kita, T. Nishimura, K. Nagashio, S. K. Wang, and A. Toriumi, "Observation of dipole layer formed at highk dielectrics/SiO₂ interface with X-ray photoelectron spectroscopy," *Appl. Phys. Exp.*, vol. 3, no. 6, Jun. 2010, Art. no. 061501, doi: 10.1143/APEX.3.061501.
- [12] K. Shiraishi *et al.*, "Oxygen-vacancy-induced threshold voltage shifts in Hf-related high-*k* gate stacks," *Thin Solid Films*, vol. 508, nos. 1–2, pp. 305–310, Jun. 2006, doi: 10.1016/j.tsf.2005.08.409.
- [13] Y. Fang, W.-J. Lee, A.-C. Yang, G.-P. Chen, N.-Y. Chen, and K.-H. Kao, "Inherent dipole layer formation driven by surface energy at nonplanar dielectric interface," *IEEE Trans. Electron Devices*, vol. 68, no. 1, pp. 294–298, Jan. 2021, doi: 10.1109/TED.2020.3039228.
- [14] G. Apostolopoulos, G. Vellianitis, A. Dimoulas, J. C. Hooker, and T. Conard, "Complex admittance analysis for La₂Hf₂O₇/SiO₂ high-*k* dielectric stacks," *Appl. Phys. Lett.*, vol. 84, no. 2, pp. 260–262, 2004, doi: 10.1063/1.1639942.
- [15] A. Kuligk, "On the modeling of Coulomb scattering in p-MOSFETs with hafnium based metal gate stacks," *Solid-State Electron.*, vol. 108, pp. 84–89, Jun. 2015, doi: 10.1016/j.sse.2014.12.021.

- [16] D. Hisamoto *et al.*, "FinFET—A self-aligned double-gate MOSFET scalable to 20 nm," *IEEE Trans. Electron Devices*, vol. 47, no. 12, pp. 2320–2325, Dec. 2000.
- [17] H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, "First experimental demonstration of Ge 3D FinFET CMOS circuits," in *Proc. IEEE Symp. VLSI Technol.*, Jun. 2015, pp. T58–T59, doi: 10.1109/VLSIT.2015.7223702.
- [18] W. Chung, M. Si, and P. D. Ye, "First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and G_{max}/G_{min}," in *IEDM Tech. Dig.*, Dec. 2018, pp. 15.2.1–15.2.4, doi: 10.1109/IEDM.2018. 8614516.
- [19] F. L. Yang *et al.*, "5 nm-gate nanowire FinFET," in *Proc. IEEE Symp. VLSI Technol.*, Jun. 2004, pp. 196–197, doi: 10.1109/VLSIT. 2004.1345476.
- [20] D. Dutartre et al., "5 nm gate all around (GAA) silicon on nothing (SON)-devices: A simple way to co-integration," in Proc. IEEE Symp. VLSI Technol., Jun. 2002, pp. 108–109.
- [21] S. Veeraraghavan and J. G. Fossum, "Short-channel effects in SOI MOSFETs," *IEEE Trans. Electron Devices*, vol. 36, no. 3, pp. 522–528, Mar. 1989, doi: 10.1109/16.19963.
- [22] A. A. Malygin *et al.*, "Hypothesis to the method of molecular layering/atomic layer deposition," *Chem. Vapor Deposition*, vol. 21, nos. 10–12, pp. 216–240, 2015, doi: 10.1002/cvde. 201502013.