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Abstract— In this work, indium-tin-oxide (ITO) transistors
with atomically thin channel thickness (Tch) of 2.1 nm
realized by atomic layer deposition (ALD) are demonstrated.
A maximum ON-state current of 970 mA/mm at VDS of 0.8 V
and an ON/OFF ratio up to 107 are achieved in ITO transistor
with In:Sn ratio of 9:1, channel length (Lch) of 60 nm,
and dielectric equivalent oxide thickness (EOT) of 2.1 nm.
Comparison between devices with different In:Sn ratios
indicates a significant reduction of electron transport
resulting from more Sn concentrations in ITO. The impact
of back-end-of-line (BEOL) compatible low-temperature
annealing is also investigated. An enhancement-mode
operation with minimum subthreshold slope (SS)
of 80 mV/dec and maximum field-effect mobility (μFE)
of 28 cm2/V·s is achieved after O2 annealing. Besides,
bias instability measurement shows the negative threshold
voltage (VT) shift under both positive and negative gate
bias stress due to donor-like interface states below the trap
neutral level (TNL). The realization of large-area synthesis
of atomically thin ITO films by ALD and decent electrical
performance provide opportunities in future monolithic 3-D
device integration with BEOL compatibility.

Index Terms— Atomic layer deposition (ALD), back-end-
of-line (BEOL) compatible, bias instability, indium tin oxide,
low-temperature annealing, thin-film transistor.

I. INTRODUCTION

THIN-FILM transistors (TFTs) based on amorphous oxide
semiconductors have gained continuous attention over

the past decades [1]–[7]. Due to several remarkable features,
such as high carrier mobility, fast response, flexible ultrathin
body, high transparency, amorphous oxide semiconductors are
considered as competitive channel material candidates for
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next-generation BEOL-compatible CMOS transistor channels
for monolithic 3-D integration [8]–[13]. However, the main
challenges for the application of such materials so far are
controllable large-scale ultrathin film synthesis as well as
reliable device performance. ITO, as a wide bandgap oxide
semiconductor (3.5–4.3 eV), is known to be widely used as
transparent electrodes in optoelectronics, while its semicon-
ductor behavior has been rarely explored due to its degeneracy
in the conduction band. A high electron density for typical
ITO is usually around 1020–1021/cm3, leading to unsatisfactory
switching characteristics [14]–[16]. By reducing the film thick-
ness to modulate the bandgap and adjust the carrier density
in oxide semiconductor materials as reported previously [14],
[16]–[18], a functional ITO channel can be expected to meet
the requirement for monolithic 3-D integration. ALD provides
the unprecedented advantage to control the thickness and In:Sn
ratio at the atomic accuracy compared to other physical vapor
deposition (PVD) techniques.

In this article, the synthesis of ITO films with a thickness of
2.1 nm is realized by the ALD technique. High-performance
ITO transistors with different In:Sn ratios, channel length (Lch)
down to 60 nm, and channel thickness (Tch) of 2.1 nm are
achieved with a maximum drain current of 970 mA/mm at a
drain-to-source voltage (VDS) of 0.8 V and an ON/OFF ratio
up to 107. Comparison between ITO transistors with different
Sn concentrations demonstrates that the electron transport in
ALD ITO films is impeded by SnO2, supported by density-
functional-theory (DFT) simulation and modeling. The impact
of BEOL-compatible low-temperature annealing in O2 and
forming gas (FG, 96% N2/4% H2) is also systematically
studied. O2 annealing is found to shift the threshold voltage
(VT ) positively and an enhancement-mode operation with VT

of 0.33 V is observed in the ITO transistor with In:Sn of 9:1
and Lch of 60 nm, which can be understood by the passivation
of oxygen vacancies in the as-grown channel. In addition, bias
instability measurement points out the possible existence of
donor-like interface states below the trap neutral level (TNL),
contributing to a negative VT shift under stress.

II. EXPERIMENTAL AND COMPUTATIONAL PROCEDURE

Fig. 1(a) illustrates the schematic of an ITO transistor. The
gate-stack includes 40 nm Ni as the bottom gate, 5 nm HfO2 as
the gate dielectric, 2.1 nm ITO as the semiconducting channel,
and 60 nm Ni as source/drain contacts. Fig. 1(b) presents the
fabrication process flow. Fig. 1(c) shows the scanning electron
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Fig. 1. (a) Schematic of the atomically thin ITO transistor with 40 nm
Ni as the bottom gate. (b) Fabrication process flow of an ITO transistor.
(c) SEM image of an ITO transistor with Lch of 1 µm. (d) AFM measure-
ment of the surface roughness on a 2.1 nm as-grown ITO film with In:Sn
ratio of 9:1.

microscopy (SEM) image of a typical fabricated ITO transistor
with Lch of 1 μm.

The device fabrication process started with a standard
cleaning process of p+ Si substrate with 90 nm thermally
grown SiO2. A standard cleaning process refers to that the
substrate was rinsed with toluene, acetone, and IPA in an
ultrasonic cleaner and dried by nitrogen to remove possible
organic particles and dirty materials. A 10 nm Al2O3 was
deposited by ALD at 175 ◦C to obtain a smooth surface,
using (CH3)3Al (TMA) and H2O as Al and O precursors.
A bilayer photoresist lithography process similar to [13] was
then applied for the sharp lift-off 40 nm Ni bottom gate by
e-beam evaporation. A 5 nm HfO2 was deposited by ALD at
200 ◦C, using [(CH3)2N]4Hf (TDMAHf) and H2O as Hf and
O precursors. A 2.1 nm ITO was deposited by ALD at 225 ◦C
with (CH3)3In (TMIn), [(CH3)2N]4Sn (TDMASn), and H2O
as In, Sn and O precursors. TMIn and TDMASn precursors
were heated to 60 ◦C to provide sufficient vapor pressure and
N2 with a flow rate of 40 sccm was used as the carrier gas. The
HfO2 and ITO were grown in two different ALD chambers but
the two ALD systems are located in the same glovebox under
environment control like a cluster system. This ALD process
started with one cycle of SnO2 with TDMASn and H2O pulsed
for 2 and 1 s, respectively, followed by N cycles of In2O3 with
TMIn and H2O pulsed for 0.625 and 0.75 s at each cycle, then
repeated. N was set to 3, 6, and 9 to obtain ITO films with
different In:Sn ratios. The thickness of the ALD ITO film was
measured by ellipsometer (Gaertner L116A) and calibrated
by transmission electron microscopy (TEM) and atomic force
microscope (AFM). Fig. 1(d) shows a low surface roughness
of 0.32 nm for the ITO film with In:Sn of 9:1 measured by
AFM. No obvious difference of surface roughness is observed
between ALD-deposited ITO films with different In:Sn ratios
and before/after O2 annealing. ITO channel isolation was done
by plasma dry etching (BCl3: 15 sccm; Ar: 60 sccm; pressure:
0.6 Pa; RF source power: 100 W; RF bias power: 50 W; time:
20 s). 60 nm Ni was deposited by e-beam evaporation as
source/drain contacts, patterned by electron beam lithography
with Lch ranging from 60 nm to 1 μm. The fabricated devices

were also annealed in O2 and FG at 250 ◦C and 300 ◦C for 60 s
to investigate the intrinsic properties of ALD ITO films.

The charge neutrality levels (CNLs) and band alignment of
In2O3 and SnO2 were calculated by DFT as implemented in
the Vienna ab initio simulation package (VASP) [19], [20].
Perdew–Burke–Ernzerhof-generalized gradient approximation
(GGA-PBE) functional is used for electron exchange-
correlation interaction [21], [22]. The CNLs were calculated
by performing Brillouin zone average using Kohn–Sham
eigenenergies computed at �-centered Monkhorst–Pack
k-points [23]
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where Nk is the number of k-points. For SnO2 unit cell con-
taining two formula units, two conduction bands (NCB = 2)
and four valence bands (NV B = 4) were used; for In2O3

primitive cell containing eight formula units, NCB = 16 and
NV B = 32. The band alignment of In2O3 and SnO2 was then
determined by aligning their CNLs with valence band edges
rigidly shifted to reproduce the experimental band gaps.

III. RESULTS AND DISCUSSION

Fig. 2(a) and (b) show the transfer and output characteristics
of an ITO transistor with In:Sn ratio of 9:1, Lch of 1 μm and
Tch of 2.1 nm. Decent drain current saturation is observed
at high VDS up to 2 V. A low contact resistance (RC) of
0.6 �·mm is extracted through the TLM method. Significant
improvement of drain current can be achieved by channel
length scaling. A maximum ON-state current of 970 mA/mm
and an on/off ratio up to 107 are achieved at VDS = 0.8 V for a
scaled device with Lch of 60 nm as shown in Fig. 2(c) and (d).
Fig. 2(e)–(j) present similar transfer and output characteristics
of scaled ITO transistors with In:Sn ratio of 6:1 and 3:1,
as well as pure In2O3 transistors as the comparison group.
Note that the hysteresis of the transfer curve is increasing
from 0.14 V for In:Sn 9:1 device to 0.31 V for In:Sn 3:1
device, while a negligible hysteresis of 0.01 V is observed in
pure In2O3 transistor, suggesting such hysteresis may origin
from the traps at the In2O3/SnO2 interface in ITO alloy formed
during ALD growth.

Fig. 3 summarizes the scaling metrics of ITO transistors
with different In:Sn ratios and Lch from 60 nm to 1 μm.
All parameters are extracted at VDS of 0.1 V to avoid the
impact of the self-heating effect. Each data point represents the
average of at least three devices. The small error bar indicates
the ultrathin ITO films grown by ALD are highly uniform at
least in the area of 1 cm2 sample size. Fig. 3(a) shows In:Sn
ratio-dependent VT relation. A trend of positive VT shift is
demonstrated as Sn concentration increases. Fig. 3(b) and (d)
present the In:Sn ratio-dependent subthreshold slope (SS) and
field-effect mobility (μFE) versus Lch characteristics. A mini-
mum SS of 163 mV/dec and a maximum μFE of 19 cm2/V·s
are achieved in the ITO transistor with In:Sn ratio of 9:1 and
Tch of 2.1 nm. The threshold voltage (VT ) was extracted by
the linear-extrapolation method at VDS = 0.1 V. SS was the
average value over several decades in the subthreshold region.
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Fig. 2. (a) Transfer and (b) output characteristics of an ITO transistor
with In:Sn ratio of 9:1, Lch of 1 µm, and Tch of 2.1 nm. (c) Transfer and
(d) output characteristics of an ITO transistor with In:Sn ratio of 9:1, Lch
of 60 nm, and Tch of 2.1 nm. (e) Transfer and (f) output characteristics of
an ITO transistor with In:Sn ratio of 6:1, Lch of 60 nm, and Tch of 2.1 nm.
(g) Transfer and (h) output characteristics of an ITO transistor with In:Sn
ratio of 3:1, Lch of 60 nm, and Tch of 2.3 nm. (i) Transfer and (j) output
characteristics of an In2O3 transistor with Lch of 80 nm and Tch of 2.1 nm.

The gm was measured at VDS = 0.1 V and also the average
value. All μFE were calculated at VDS = 0.1 V. Besides, it can
be seen that SS increases and μFE decreases with more Sn
doping concentration in ALD ITO films.

To understand such In:Sn ratio-dependent device perfor-
mance, DFT calculation was performed to determine the band
alignment between In2O3 and SnO2 as shown in Fig. 4. The
presence of the interfaces and amorphous disorders in ALD
films pins the Fermi level at the CNL. The band edges of In2O3

and SnO2 are therefore positioned by aligning their CNLs
to ensure the Fermi level stays continuously throughout the
heterointerface [23]. For both In2O3 and SnO2, their CNLs
lie above the conduction band edges (CBE). Note that the
calculated CNL of In2O3 (0.34 eV above EC) is quantitatively
agreeing with the experimental result of ∼0.4 eV above

Fig. 3. (a) VT, (b) SS, (c) gm, (d) µFE scaling metrics of ITO transistors
with In:Sn ratio of 9:1, 6:1, 3:1, Lch from 60 nm to 1 µm and pure In2O3
transistors as a comparison group. Tch of ITO transistors with In:Sn ratio
of 9:1, 6:1, and In2O3 transistors is 2.1 nm. Tch of ITO transistors with
In:Sn ratio of 3:1 is 2.3 nm. Each data point represents the average of at
least three devices.

Fig. 4. Atomic structures of (a) In2O3 and (b) SnO2 used for CNL
and band alignment calculation. Band structures of (c) In2O3 and
(d) SnO2. The calculated CNL of In2O3 lies ∼0.34 eV above CBE,
while CNL of SnO2 lies ∼0.24 eV above CBE. CNLs are used for band
alignment between In2O3 and SnO2. The band edges are rigidly shifted
to reproduce the experimental band gaps.

EC [24]. In this band alignment, the conduction band of SnO2

is ∼0.1 eV above that of In2O3, so electrons will accumulate
in the In2O3 region in the In2O3-SnO2 composite films.
As a result, In2O3 would act as the main electron-conducting
channel while SnO2 behaves as the weak potential barrier
in the ITO film against electron transport. Therefore, higher
Sn concentration will reduce the electron transport through
the In2O3 conduction pathway and lead to poorer device
performance including larger SS and lower μFE.

Fig. 5(a) and (b) present the typical transfer and output
characteristics of an ITO transistor with In:Sn ratio of 9:1,
Lch of 60 nm, and Tch of 2.1 nm after 300 ◦C annealing in
O2 for 60 s. An on/off ratio of 3.3 × 107 and a positive
VT of 0.33 V are achieved at VDS of 0.1 V, indicating an
enhancement-mode operation by definition. Such positive VT

shift can be understood by the filling of the existing oxygen
vacancies in ALD ITO films. It is known that oxygen vacancies
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act as shallow donors in doped In2O3, which accounts for the
Fermi level pinned deeply in the conduction band [15], [25].
A previous study has reported the carrier density in pulsed
laser deposited ITO film can be adjusted by O2 pressure
during growth [26]. Similarly, oxygen atoms induced during
O2 annealing can also fill oxygen vacancies, lower the electron
density, and bring down the Fermi level. Fig. 5(c) and (d) show
the transfer and output characteristics of an ITO transistor
with In:Sn ratio of 9:1, Lch of 1 μm and Tch of 2.1 nm
after 300 ◦C annealing in O2 for 60 s. The hysteresis is
significantly reduced to 0.02 V compared to devices without
annealing, suggesting O2 annealing helps eliminate the traps
at the In2O3/SnO2 interfaces in the alloy ITO film. There is no
obvious improvement in device performance by increasing O2

annealing time. Fig. 5(e)–(h) presents the transfer and output
characteristics of ITO transistors with In:Sn ratio of 9:1, Lch

of 60 nm and 1 μm, respectively, Tch of 2.1 nm after 300 ◦C
annealing in FG for 60 s. Compared to as-fabricated devices,
FG annealing at 300 ◦C slightly shifts the VT negatively
and has a limited effect to improve the In2O3/SnO2 interface
quality. FG annealing effect here is similar to other reported
work on ternary or quaternary oxide semiconductors and in
great contract to ALD In2O3 film [13].

Fig. 6 summarizes the scaling metrics of ITO transistors
with In:Sn ratio of 9:1, 6:1, 3:1, and Lch from 60 nm to
1 μm after O2 and FG annealing at 250 ◦C and 300 ◦C
for 60 s compared to devices without annealing. Fig. 6(a)
compares VT of ITO transistors with In:Sn ratio of 9:1 under
different annealing conditions. A large positive VT shift is
observed in all O2 annealed ITO transistors due to the filling
of oxygen vacancies and likely also the reduction of defects
induced in fabrication [13], [27]. Besides, O2 annealing also
weakens the Lch dependent VT . Fig. 6(b) and (d) show SS and
μFE versus Lch characteristics of ITO transistors with In:Sn
ratio of 9:1 under different annealing conditions. A minimum
SS of 80 mV/dec and a maximum μFE of 28 cm2/V·s are
achieved after O2 annealing, which is comparable to other
amorphous oxide semiconductor TFTs. Similar phenomena are
also observed in ITO transistors with In:Sn ratio of 6:1 and 3:1
as shown in Fig. 6(e)–(l). Therefore, O2 can be considered as
a better choice to passivate the interface traps and improve
device electrical performance in low-temperature annealing
process [13], [27].

In addition, bias instability of ALD ITO transistors is also
studied. Fig. 7(a) and (b) demonstrate the evolution of transfer
characteristics of ITO transistors with In:Sn ratio of 9:1, Lch

of 60 nm, and Tch of 2.1 nm under gate bias of −3 and 3 V,
respectively, for a stress time up to 2000 s. Fig. 7(c) and (d)
show −�VT versus time of ITO transistors with In:Sn ratio of
9:1, Lch of 60 nm and 1 μm. A negative VT shift is observed in
both cases under gate bias of −3 and 3 V, which is different
from indium-gallium-tin-oxide (IGZO) TFTs where positive
VT shift is observed resulting from the charge trapping of
accumulated electrons [28], [29]. Such a phenomenon can
be explained by introducing the TNL model [30]. According
to the previous calculation, TNL is located ∼0.32 eV above
the conduction band in ultrathin In2O3 [31]. Because of the
similarity of ALD In2O3 and ALD ITO, it can be assumed

Fig. 5. (a) Transfer and (b) output characteristics of an ITO transistor
with In:Sn ratio of 9:1, Lch of 60 nm and Tch of 2.1 nm after 60 s O2
annealing at 300 ◦C. (c) Transfer and (d) output characteristics of an ITO
transistor with In:Sn ratio of 9:1, Lch of 1 µm and Tch of 2.1 nm after 60 s
O2 annealing at 300 ◦C. (e) Transfer and (f) output characteristics an ITO
transistor with In:Sn ratio of 9:1, Lch of 60 nm after 60 s FG annealing
at 300 ◦C. (g) Transfer and (h) output characteristics of an ITO transistor
with In:Sn ratio of 9:1, Lch of 1 µm and Tch of 2.1 nm after 60 s FG
annealing at 300 ◦C.

that TNL in ITO is also likely to be deeply aligned in the
conduction band due to its large density of valence band
states [24], [32], [33]. Since the Fermi level is located below
TNL, the donor-like interface states in between will always
lead to a negative VT shift regardless of the polarity of
gate bias, similar to the observation in ALD In2O3 [33].
Fig. 7(e) and (f) show −�VT as a function of stress time
of ITO transistors with In:Sn ratio of 9:1, Lch of 60 nm
and 1 μm after O2 annealing at 250 ◦C for 60 s. The
Lch dependent −�VT relation is nearly eliminated by the
removal of defects after O2 annealing. Fig. 7(g) and (h) present
−�VT as a function of stress time of ITO transistors with
In:Sn ratio of 9:1 after FG annealing at 250 ◦C for 60 s.
No big difference is observed between the results after FG
annealing and as-fabricated ITO transistors, indicating ALD
ITO films are more stable in FG compared to the serious
hydrogen doping issue in IGZO [9], [34]. Reliability is one of
the most important factors that need serious consideration in
the development of a manufacturing technology. Despite the
encouraging transistor characteristics of atomically thin ITO
films demonstrated above, further experiments are still highly
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Fig. 6. (a) VT, (b) SS, (c) gm, (d) µFE scaling metrics of ITO transistors
with In:Sn ratio of 9:1, Lch from 60 nm to 1µm and Tch of 2.1 nm compared
to the results after 60 s O2 and FG annealing at 250 ◦C and 300 ◦C.
(e) VT, (f) SS, (g) gm, (h) µFE scaling metrics of ITO transistors with
In:Sn ratio of 6:1, Lch from 1 µm to 60 nm and Tch of 2.1 nm under same
annealing conditions. (i) VT, (j) SS, (k) gm, (l) µFE scaling metrics of ITO
transistors with In:Sn ratio of 3:1, Lch from 60 nm to 1 µm and Tch of
2.3 nm under same annealing conditions.

demanded to improve the interface quality and reduce bias
instability to meet the requirement for the application of ALD
ITO as a BEOL-compatible transistor channel.

Fig. 8 presents a benchmark of ON-state current versus
film thickness of recent ITO transistors deposited by ALD
and sputtering. It can be seen that ALD deposited ITO films
exhibit comparably high ON-state current as sputtered ITO
films. Meanwhile, ALD has a more accurate control of the
film thickness with high reproducibility and conformability

Fig. 7. Evolution of transfer characteristics of ITO transistors with In:Sn
ratio of 9:1, Lch of 60 nm, and Tch of 2.1 nm under gate bias of (a) −3
and (b) 3 V for a stress time of 2000 s. (c) and (d) Vth shift as a function
of stress time of as-fabricated ITO transistors with In:Sn ratio of 9:1, Tch
of 2.1 nm, Lch of 60 nm, and 1 µm separately. (e) and (f) Vth shift as
a function of stress time of ITO transistors with In:Sn ratio of 9:1, Lch
of 60 nm and 1 µm after 60 s O2 annealing at 250 ◦C. (g) and (h) Vth
shift as a function of stress time of ITO transistors with In:Sn ratio of 9:1,
Tch of 2.1 nm, Lch of 60 nm and 1 µm after 60 s FG annealing at 250 ◦C.

Fig. 8. Benchmark of ON-state current versus film thickness of recent
ITO transistors. Solid symbol represents ITO films deposited by ALD and
hollow symbols represent ITO films deposited by sputtering.

than sputtering, which paves way for further device scaling
with high precision.

IV. CONCLUSION

In summary, atomically thin ITO transistors are demon-
strated for the first time by the ALD process at 225 ◦C.
A maximum ON-state current of 970 mA/mm at VDS of 0.8 V
and an on/off ratio up to 107 are achieved in ITO transistor
with In:Sn ratio of 9:1, Lch of 60 nm and Tch of 2.1 nm.
Comparison between ITO transistors with different In:Sn ratios
reveals the effect of Sn concentration to impede the electron
transport which is understood by DFT calculation of band
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alignment of In2O3 versus SnO2. BEOL-compatible low-
temperature annealing is also systematically studied. An SS
as low as 80 mV and a μFE of 28 cm2/V·s are achieved
after O2 annealing due to the filling of oxygen vacancies
and elimination of exhibiting defects. Finally, bias instability
measurement shows a negative VT shift for both positive and
negative stress voltage, which is ascribed to the existence of
donor-like interface states below TNL. This work provides
prospects for the future application of ALD ITO films in
monolithic 3-D integration.
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