

Scaled Atomic-Layer-Deposited Indium Oxide Nanometer Transistors With Maximum Drain Current Exceeding 2 A/mm at Drain Voltage of 0.7 V

Mengwei Si[®], *Member, IEEE*, Zehao Lin, Adam Charnas, and Peide D. Ye[®], *Fellow, IEEE*

Abstract—In this work, we demonstrate scaled back-endof-line (BEOL) compatible indium oxide (In₂O₃) transistors by atomic layer deposition (ALD) with channel thickness (T_{ch}) of 1.0-1.5 nm, channel length (L_{ch}) down to 40 nm, and equivalent oxide thickness (EOT) of 2.1 nm, with record high drain current of 2.0 A/mm at V_{DS} of 0.7 V among all oxide semiconductors. Enhancement-mode In₂O₃ transistors with I_D over 1.0 A/mm at V_{DS} of 1 V are also achieved by controlling the channel thickness down to 1.0 nm at atomic layer scale. Such high current density in a relatively low mobility amorphous oxide semiconductor is understood by the formation of high density 2D channel beyond 4×10^{13} /cm² at HfO₂/In₂O₃ oxide/oxide interface.

Index Terms—Indium oxide, oxide semiconductor, thin-film transistor, ultrathin body, BEOL compatible, atomic layer deposition.

I. INTRODUCTION

O XIDE semiconductors [1] are the leading channel materials for thin-film transistors (TFTs) and are considered as promising channel materials for back-end-of-line (BEOL) compatible transistors for monolithic 3-dimensional (3D) integration. Indium oxide (In₂O₃) [2] or doped In₂O₃ such as indium tin oxide (ITO) [3], [4], indium tungsten oxide (IWO) [5], indium aluminum zinc oxide (IAZO) [6], indium gallium zinc oxide (IGZO), etc. [7]–[9], deposited by sputtering [3]–[9] or atomic layer deposition (ALD) [2], [10]–[13], are being investigated due to their low thermal budget, high mobility, atomically smooth surface, wafer-scale homogenous films. Especially, the conformal capability of ALD on side walls, deep trenches, 3D structures enables tremendous new opportunities and the flexibility toward 3D device integration.

Manuscript received November 15, 2020; accepted December 6, 2020. Date of publication December 9, 2020; date of current version January 27, 2021. This work was supported in part by the Semiconductor Research Corporation (SRC) nCore IMPACT Center and in part by the Air Force Office of Scientific Research (AFOSR) and Semiconductor Research Corporation (SRC)/the Defense Advanced Research Projects Agency (DARPA) JUMP ASCENT Center. The review of this letter was arranged by Editor K. J. Kuhn. (*Corresponding author: Peide D. Ye.*)

The authors are with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA, and also with the Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA (e-mail: yep@purdue.edu).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/LED.2020.3043430.

Digital Object Identifier 10.1109/LED.2020.3043430

Fig. 1. (a) Schematic diagram of an In_2O_3 transistor with 5 nm HfO₂ as gate dielectric. (b) SEM image of a fabricated In_2O_3 transistor. (c) In_2O_3 thickness versus ALD cycles, showing a nucleation delay process. (d) C-V measurement of the gate stack from 1 kHz to 1 MHz. Smaller capacitance at negative gate bias is due to the depletion of semiconducting In_2O_3 channel.

In this work, we report high-performance In₂O₃ transistors by ALD with channel length (Lch) scaled down to 40 nm, with record high drain current (I_D) of 2.0 A/mm at a low drain-to-source voltage (V_{DS}) of 0.7 V, among all oxide semiconductors to the authors' best knowledge. Channel thickness (T_{ch}) scaling down to 1.0 nm is achieved by the accurate thickness control of ALD cycles. The devices exhibit excellent immunity to short channel effects (SCEs) due to T_{ch} scaling and equivalent oxide thickness (EOT) scaling down to 2.1 nm. Enhancement-mode In₂O₃ transistors with threshold voltage (V_T) greater than zero and with I_D over 1.0 A/mm at V_{DS} of 1 V are also achieved by ALD control of thickness. Such high current density in a relatively low mobility amorphous oxide semiconductor is understood by the formation of high density 2D electron channel larger than 4×10^{13} /cm² at HfO₂/In₂O₃ oxide/oxide interface [4].

II. EXPERIMENTS

Fig. 1(a) shows the schematic diagram of an In_2O_3 transistor. The gate stack includes 40 nm Ni as gate metal, 5 nm HfO₂ as gate dielectric, 1/1.2/1.5 nm In_2O_3 as semiconducting

0741-3106 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. channels and 80 nm Ni as source/drain (S/D) contacts. Fig. 1(b) shows the scanning electron microscopy (SEM) image of a fabricated device with L_{ch} of 1 μ m, where the inset illustrates the measurement of the shortest L_{ch} of 40 nm. In₂O₃ channel is too thin to be visible. T_{ch} are determined together by transmission electron microscopy (TEM), atomic force microscopy (AFM) and ellipsometry, as shown in the In₂O₃ thicknesses versus ALD cycles in Fig. 1(c) [2]. The deposition rate is slower in the first 100 cycles due to the nucleation delay of a typical ALD process.

The device fabrication process started with standard cleaning of p+ Si substrate with 90 nm thermally grown SiO₂. A bi-layer photoresist lithography process was then applied for the sharp lift-off of Ni gate metal by e-beam evaporation. 5 nm HfO₂ was then deposited by ALD at 200 °C, using [(CH₃)₂N]₄Hf (TDMAHf) and H₂O as Hf and O precursors. In_2O_3 thin films with thicknesses of 1/1.2/1.5 nm were then deposited by ALD at 225 °C, using (CH₃)₃In (TMIn) and H₂O as In and O precursors. ALD was carried out using N₂ as carrier gas at a flow rate of 40 sccm and the base pressure is 432 mTorr. TMIn and H₂O were pulsed for 625 ms and 750 ms at each cycle, respectively. N₂ flow rate was increased to 100 sccm during the 25 s purge. Channel isolation was done by wet etching of In_2O_3 using concentrated hydrochloric acid. 80 nm Ni was then deposited by e-beam evaporation as S/D contacts, patterned by electron beam lithography. The fabrication process has a low thermal budge of 225 °C and is BEOL compatible. The gate stack has an EOT of 2.1 nm as shown in the C-V measurement in Fig. 1(d). EOT is calculated using $C_{ox} = \frac{\epsilon_0 \epsilon_{SiO2}}{EOT}$, where ϵ_{SiO2} is 3.9 as dielectric constant of SiO₂, ϵ_0 is 8.85×10^{-14} F/cm as vacuum permittivity and C_{ox} is measured from C-V measurement as 1.62 μ F/cm².

III. RESULTS AND DISCUSSION

Fig. 2(a) and 2(b) show the I_D -V_{GS} and I_D -V_{DS} characteristics of an In_2O_3 transistor with L_{ch} of 40 nm and T_{ch} of 1.2 nm. Maximum I_D of 2.0 A/mm is achieved at a low V_{DS} of 0.7 V. A low on-resistance (R_{ON}) of 0.35 Ω -mm is obtained. Fig. 2(c) and 2(d) present the I_D -V_{GS} and I_D -V_{DS} characteristics of a similar In_2O_3 transistor with L_{ch} of 50 nm and T_{ch} of 1.2 nm. Maximum I_D of 2.0 A/mm is achieved at V_{DS} of 0.8 V. Fig. 2(e) and 2(f) illustrate the I_D -V_{GS} and I_D -V_{DS} characteristics of another In_2O_3 transistor with L_{ch} of 1 μ m and T_{ch} of 1.2 nm, showing well-behaved I_D saturation at high V_{DS} greater than V_{GS}-V_T.

Fig. 3(a) and 3(b) show the I_D-V_{GS} and I_D-V_{DS} characteristics of an In₂O₃ transistor with L_{ch} of 80 nm and T_{ch} of 1.2 nm. Maximum I_D of 2.1 A/mm is achieved at V_{DS} of 1 V. V_{GS}-dependent extrinsic field-effect mobility (μ_{FE}) is extracted from maximum transconductance (g_m) at low V_{DS}, with a μ_{FE} of 39 cm²/V·s, as shown in Fig. 3(c). 2D carrier density (n_{2D}) can be *estimated* according to I_D = n_{2D}q μ E, where μ is mobility (V_{GS}-dependent μ_{FE} is used) and E is the channel electric field (i.e. V_{DS}/L_{ch} at low V_{DS} assuming very low R_C), q is the elementary charge. A high 2D electron density at HfO₂/In₂O₃ oxide/oxide of 4.5 × 10¹³ /cm² is achieved, suggesting Fermi level is deeply aligned into the conduction band (E_C) leading to high electron density and low contact resistance in In₂O₃ [2], [4]. The high mobile

Fig. 2. I_D -V_{GS} and I_D -V_{DS} characteristics of In_2O_3 transistors with L_{ch} of (a, b) 40 nm, (c, d) 50 nm, and (e, f) 1 μ m and T_{ch} of 1.2 nm.

Fig. 3. (a) I_D-V_{GS} and (b) I_D-V_{DS} characteristics of an In₂O₃ transistor with L_{ch} of 80 nm and T_{ch} of 1.2 nm. (c) μ_{FE} versus V_{GS} characteristics extracted at V_{DS} = 0.05 V. (d) Channel mobile carrier density versus V_{GS} calculated from I_D and μ_{FE} .

carrier density is not screened by traps due to the Fermi level alignment inside of conduction band of In_2O_3 . [2] The obtained high electron density is reasonable, considering on high gate capacitance of 1.6 μ F/cm² (see Fig. 1(d)), large voltage span > 4V, depletion-mode operation, a large bandgap of oxide channel.

Fig. 4(a) and 4(b) show the I_D -V_{GS} and I_D -V_{DS} characteristics of an In_2O_3 transistor with L_{ch} of 40 nm and T_{ch} of 1 nm. Maximum I_D of 1 A/mm is achieved at V_{DS} of 1 V. V_T of 0.1 V is extracted by linear extrapolation at V_{DS} of 0.05 V. Thus, enhancement-mode operation and high I_D of 1 A/mm are achieved simultaneously. Fig. 4(c) and 4(d) show the I_D -V_{GS}

Fig. 4. (a) I_D -V_{GS} and (b) I_D -V_{DS} characteristics of an In_2O_3 transistor with L_{ch} of 40 nm and T_{ch} of 1 nm. (c) I_D -V_{GS} and (d) I_D -V_{DS} characteristics of an In_2O_3 transistor with L_{ch} of 0.3 μ m and T_{ch} of 1.5 nm.

Fig. 5. (a) $I_{D,max}$, (b) g_m , (c) V_T , (d) μ_{FE} , and (e) SS scaling metrics of In_2O_3 transistors with L_{ch} from 1 μ m to 40 nm and T_{ch} from 1 nm to 1.5 nm. $I_{D,max}$ and g_m are extracted at $V_{DS} = 1$ V unless otherwise specified. Each data point represents the average of at least 5 devices.

and I_D - V_{DS} characteristics of an In_2O_3 transistor with T_{ch} of 1.5 nm but L_{ch} as large as 0.3 μ m. Maximum I_D of 1 A/mm is also achieved at V_{DS} of 1 V, with a depletion-mode operation due to a relatively thick T_{ch} .

Fig. 5 summarizes the scaling metrics of In_2O_3 transistors with L_{ch} from 1 μ m down to 40 nm and with various T_{ch} from 1.5 nm down to 1 nm. Each data point represents the average of at least 5 devices. The small error bar in these plots demonstrates that the ALD based In_2O_3 transistors are highly uniform. Fig. 5(a) and 5(b) show the maximum I_D ($I_{D,max}$) and g_m versus L_{ch} characteristics at various T_{ch} . $I_{D,max}$ and g_m are extracted at $V_{DS} = 1$ V unless otherwise specified. The devices mostly follow a 1/L scaling trend. The

Fig. 6. (a) R_C versus V_{GS}-V_T extracted by TLM method for In₂O₃ transistors with T_{ch} from 1 nm to 1.5 nm. (b) ρ_C versus V_{GS}-V_T extracted by TLM method for In₂O₃ transistors with T_{ch} from 1 nm to 1.5 nm.

deviation from 1/L scaling at short channel devices is because of lower V_{DS} and self-heating effects. The deviation from 1/L scaling at long channels is likely to be the result of floating body effect. Fig. 5(c) studies the impact of T_{ch} and L_{ch} on V_T . Both depletion-mode and enhancement-mode In_2O_3 transistors are demonstrated. V_T can be considerably tuned by T_{ch} and accurately controlled by ALD cycles. Fig. 5(d) shows the scaling metrics of In₂O₃ transistors with various T_{ch} on μ_{FE} . μ_{FE} is extracted from maximum g_m at low V_{DS} of 0.05 V. High μ_{FE} of 77 cm²/V·s is achieved at ultrathin T_{ch} of 1.5 nm, which is rather high among amorphous oxide semiconductors, being benefitted from the atomically smooth surface by ALD. Fig. 5(e) presents the subthreshold slope (SS) versus L_{ch} characteristics at high V_{DS}. Minimum SS of 88 mV/dec is achieved. SS has larger variation because off-state is more affected by gate leakage current, especially at short channel due to the more negative V_T. Such variation can be reduced by optimizing the gate stack. The devices exhibit excellent immunity to short channel effects down to 40 nm due to the ultrathin In₂O₃ channel and scaled EOT. The device performance has still rooms to boost by further aggressive scaling and process optimization.

Fig. 6 shows the TLM extraction of R_C on In₂O₃ transistors with various T_{ch} at constant V_{GS}-V_T. The y-axis intersection at L_{ch} = 0 μ m is extracted as 2R_C. R_C and contact resistivity (ρ_{C}) are calculated as shown in Fig. 6(a) and 6(b). R_C as low as 0.06 Ω ·mm and ρ_{C} as low as 0.5 × 10⁻⁸ Ω ·cm² are estimated on In₂O₃ transistors with T_{ch} of 1.2 nm, indicating a very low effective Schottky barrier height and width.

IV. CONCLUSION

In summary, scaled BEOL compatible ALD In₂O₃ transistors are demonstrated with T_{ch} down to 1 nm, L_{ch} down to 40 nm and EOT of 2.1 nm. A high I_D of 2.0 A/mm at V_{DS} of 0.7 V is achieved on depletion-mode In₂O₃ transistors. Enhancement-mode In₂O₃ transistors with I_D over 1.0 A/mm at V_{DS} of 1 V are also achieved, by ALD control of channel thickness on V_T tuning. Such high current density in a relatively low mobility amorphous oxide semiconductor is understood by the formation of high density 2D electron density beyond 4×10^{13} /cm² at HfO₂/In₂O₃ oxide/oxide interface. ALD In₂O₃ based devices are promising BEOL compatible device technology toward monolithic 3D integration. This new channel material at 1 nm atomic scale, as thin as monolayer of 2D van der Waals materials, opens tremendous new opportunities in device research.

The authors gratefully acknowledge X. Sun and H. Wang for the technical support on TEM imaging.

REFERENCES

- T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," *Sci. Technol. Adv. Mater.*, vol. 11, no. 4, Feb. 2010, Art. no. 044305, doi: 10.1088/1468-6996/11/4/044305.
- [2] M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas, D. Zheng, X. Lyu, H. Wang, K. Cho, and P. D. Ye, "Why In₂O₃ can make 0.7 nm atomic layer thin transistors?" *Nano Lett.*, to be published.
- [3] S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, X. Li, and Y. Wu, "Nanometre-thin indium tin oxide for advanced high-performance electronics," *Nature Mater.*, vol. 18, no. 10, pp. 1091–1097, Oct. 2019, doi: 10.1038/s41563-019-0455-8.
- [4] M. Si, J. Andler, X. Lyu, C. Niu, S. Datta, R. Agrawal, and P. D. Ye, "Indium–Tin-Oxide transistors with one nanometer thick channel and ferroelectric gating," ACS Nano, vol. 14, no. 9, pp. 11542–11547, Aug. 2020, doi: 10.1021/acsnano.0c03978.
- [5] W. Chakraborty, B. Grisafe, H. Ye, I. Lightcap, K. Ni, and S. Datta, "BEOL compatible dual-gate ultra thin-body W-doped Indium-Oxide transistor with I_{ON}=370μA/μm, SS=73mV/dec and I_{on}/I_{off} ratio>4×10⁹," in *Proc. Symp. VLSI Technol.*, Jun. 2020, pp. 1–2, Paper TH2.1.
- [6] H. Fujiwara, Y. Sato, N. Saito, T. Ueda, and K. Ikeda, "Surrounding gate vertical-channel FET with gate length of 40 nm using BEOL compatible high-thermal-tolerance in-al-zn oxide channel," in *Proc. IEEE Symp. VLSI Technol.*, Jun. 2020, pp. 1–2.
- [7] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thinfilm transistors," *Jpn. J. Appl. Phys.*, vol. 45, no. 5B, pp. 4303–4308, May 2006, doi: 10.1143/JJAP.45.4303.

- [8] J. Wu, F. Mo, T. Saraya, T. Hiramoto, and M. Kobayashi, "A monolithic 3D integration of RRAM array with oxide semiconductor FET for in-memory computing in quantized neural network AI applications," in *Proc. IEEE Symp. VLSI Technol.*, Jun. 2020, pp. 1–2.
- [9] S. Samanta, K. Ran, C. Sun, C. Wang, A. Voon-Yew Thean, and X. Gong, "Amorphous IGZO TFTs featuring extremely-scaled channel thickness and 38 nm channel length: Achieving record high G_{m.Max} of 125 μS/μm at V_{DS} of 1V and I_{ON} of 350 μm," in *Proc. IEEE Symp. VLSI Technol.*, Jun. 2020, pp. 1–2.
- [10] H. Y. Kim, E. A. Jung, G. Mun, R. E. Agbenyeke, B. K. Park, J.-S. Park, S. U. Son, D. J. Jeon, S.-H.-K. Park, T.-M. Chung, and J. H. Han, "Low-temperature growth of indium oxide thin film by plasma-enhanced atomic layer deposition using liquid Dimethyl(Nethoxy-2,2-dimethylpropanamido)indium for high-mobility thin film transistor application," ACS Appl. Mater. Interface, vol. 8, no. 40, pp. 26924–26931, Sep. 2016, doi: 10.1021/acsami.6b07332.
- [11] H.-I. Yeom, J. B. Ko, G. Mun, and S.-H.-K. Park, "High mobility polycrystalline indium oxide thin-film transistors by means of plasmaenhanced atomic layer deposition," *J. Mater. Chem. C*, vol. 4, no. 28, pp. 6873–6880, 2016, doi: 10.1039/c6tc00580b.
- [12] J. Lee, J. Moon, J.-E. Pi, S.-D. Ahn, H. Oh, S.-Y. Kang, and K.-H. Kwon, "High mobility ultra-thin crystalline indium oxide thin film transistor using atomic layer deposition," *Appl. Phys. Lett.*, vol. 113, no. 11, Sep. 2018, Art. no. 112102, doi: 10.1063/1.5041029.
- [13] Q. Ma, H.-M. Zheng, Y. Shao, B. Zhu, W.-J. Liu, S.-J. Ding, and D. W. Zhang, "Atomic-layer-deposition of indium oxide nano-films for thin-film transistors," *Nanosc. Res. Lett.*, vol. 13, no. 1, p. 4, Jan. 2018, doi: 10.1186/s11671-017-2414-0.